4.23文创礼盒,买2个减5元 读书月福利
欢迎光临中图网 请 | 注册
> >>
声纳阵列信号处理技术

声纳阵列信号处理技术

作者:杜选民
出版社:电子工业出版社出版时间:2018-03-01
开本: 16开 页数: 260
本类榜单:工业技术销量榜
中 图 价:¥46.4(8.0折) 定价  ¥58.0 登录后可看到会员价
暂时缺货 收藏
运费6元,满69元免运费
?快递不能达地区使用邮政小包,运费14元起
云南、广西、海南、新疆、青海、西藏六省,部分地区快递不可达
本类五星书更多>

声纳阵列信号处理技术 版权信息

  • ISBN:9787121336492
  • 条形码:9787121336492 ; 978-7-121-33649-2
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>>

声纳阵列信号处理技术 本书特色

阵列信号处理是现代声纳设备的核心功能之一。通过接收阵列的信号处理,可以获取空间指向性增益,提高空间分辨和干扰抑制能力,实现对目标的检测与跟踪、方位与距离估计;通过发射阵列的信号处理,可以获取具有一定时延差或相位差的阵元信号,从而形成指向性发射波束,提高声源级;通过空-时自适应处理,可以提高对弱目标的检测能力。近年来,声纳技术不断发展,出现了多线列阵声纳、连续波声纳、MIMO声纳等新体制声纳以及自适应盲处理、时反处理、矢量信号处理、鲁棒性波束形成、模基信号处理等新型处理算法,这些都是声纳阵列信号处理的发展与丰富。本书深入、系统地介绍了可应用于实际声纳设备的阵列信号处理技术,在简单的原理接收基础上又大量的计算机模拟仿真及湖、海试实际数据的处理结果。另外本书有较大篇幅的声纳阵列信号处理领域的新技术介绍。

声纳阵列信号处理技术 内容简介

阵列信号处理是现代声纳设备的核心功能之一。通过接收阵列的信号处理,可以获取空间指向性增益,提高空间分辨和干扰抑制能力,实现对目标的检测与跟踪、方位与距离估计;通过发射阵列的信号处理,可以获取具有一定时延差或相位差的阵元信号,从而形成指向性发射波束,提高声源级;通过空-时自适应处理,可以提高对弱目标的检测能力。近年来,声纳技术不断发展,出现了多线列阵声纳、连续波声纳、MIMO声纳等新体制声纳以及自适应盲处理、时反处理、矢量信号处理、鲁棒性波束形成、模基信号处理等新型处理算法,这些都是声纳阵列信号处理的发展与丰富。本书深入、系统地介绍了可应用于实际声纳设备的阵列信号处理技术,在简单的原理接收基础上又大量的计算机模拟仿真及湖、海试实际数据的处理结果。另外本书有较大篇幅的声纳阵列信号处理领域的新技术介绍。

声纳阵列信号处理技术 目录

第1 章 声场概述············································································································1
1.1 引言···························································································································· 1
1.2 声波的基本概念········································································································ 1
1.3 声学基本物理量········································································································ 1
1.4 理想流体介质中小振幅波传播的基本规律······························································ 2
1.4.1 理想流体介质······································································································· 2
1.4.2 连续性方程·········································································································· 3
1.4.3 状态方程············································································································· 3
1.4.4 运动方程············································································································· 4
1.4.5 波动方程············································································································· 4
1.4.6 速度势函数·········································································································· 4
1.4.7 亥姆霍兹方程······································································································· 5
1.4.8 三种不同坐标系下亥姆霍兹方程求解····································································· 5
1.4.9 线性滤波器理论框架下波动方程求解····································································· 9
1.4.10 介质特性阻抗··································································································· 11
1.5 分层介质中的波传播······························································································· 11
1.5.1 平行平面层中波传播的一般关系·········································································· 11
1.5.2 边界条件··········································································································· 12
1.5.3 硬底均匀浅海声场······························································································ 12
1.5.4 液态海底均匀浅海声场······················································································· 14
1.6 声场传播基本模型··································································································· 15
1.7 声学工具·················································································································· 16
1.8 本章小结·················································································································· 17
参考文献······························································································································17
第2 章 基阵理论基础···································································································18
2.1 引言·························································································································· 18
2.2 基阵的主要性能参数······························································································· 18
2.2.1 常见的基阵类型································································································· 18
2.2.2 主要性能参数····································································································· 18
2.3 均匀线列阵·············································································································· 21
2.3.1 基阵响应(指向性函数) ···················································································· 22
2.3.2 乘积定理··········································································································· 24
2.3.3 幅度加权··········································································································· 25
2.3.4 波束扫描··········································································································· 25
2.3.5 离散空间傅里叶变换··························································································· 27
2.3.6 宽带声源······························
展开全部

声纳阵列信号处理技术 作者简介

杜选民,1970年9月出生,研究员/博士生导师,毕业于哈尔滨工程大学,获水声工程专业博士学位。现担任中国船舶重工集团公司第七二六研究所副所长、水声对抗技术重点实验室副主任、水声对抗技术重点实验室学术委员会副主任委员、水声对抗国防科技创新团队带头人、上海市声学学会理事、《声学学报》《声学技术》《舰船科学技术》编委会委员。从事水声及水声对抗技术研究工作20余年,主持研制了舰用鱼雷报警声纳、舰水声对抗系统、港口近程水下警戒探测系统等装备,均填补国内空白,获国防科技进步一等奖2项、二等奖2项、三等奖2项。在国内首次解决了拖线阵左右舷分辨、高速运动目标自适应检测与识别、非线性声纳工程应用等关键技术。入选国家新世纪百千万人才工程、国防科技工业511人才工程、国防科技工业有突出贡献中青年专家、上海市领军人才。

商品评论(0条)
暂无评论……
书友推荐
编辑推荐
返回顶部
中图网
在线客服