超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >>
国外计算机科学教材系列人工智能机器人学导论(第2版)(英文版)/(美)ROBIN R. MURPHY

国外计算机科学教材系列人工智能机器人学导论(第2版)(英文版)/(美)ROBIN R. MURPHY

出版社:电子工业出版社出版时间:2018-02-01
开本: 其他 页数: 636
本类榜单:教材销量榜
中 图 价:¥68.1(4.9折) 定价  ¥139.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口
有划线标记、光盘等附件不全详细品相说明>>
本类五星书更多>

国外计算机科学教材系列人工智能机器人学导论(第2版)(英文版)/(美)ROBIN R. MURPHY 版权信息

国外计算机科学教材系列人工智能机器人学导论(第2版)(英文版)/(美)ROBIN R. MURPHY 本书特色

本书首先介绍人工智能机器人的定义、历史和体系结构,然后全面系统地阐述人工智能机器人在传感、感知、运动、规划、导航、学习、交互等方面的基础理论和关键技术。全书共分为五部分。*部分共5章,定义了什么是智能机器人,介绍了人工智能机器人简史,并讨论了自动化与自治、软件体系结构和遥操作;第二部分共6章,针对机器人的反应(行为)层智能展开讨论,分别对应机器人行为、感知与行为、行为协调、运动学、传感器与感知,以及距离感知等方面的内容;第三部分共5章,详细讨论机器人的慎思层智能,包括慎思层的内涵、导航、路径和动作规划、定位、建图与探索,以及机器学习等内容;第四部分共2章,讨论机器人的交互层智能,包括多机器人系统和人-机器人交互;第五部分共2章,分别介绍自治系统的设计与评估方法,以及与机器人相关的伦理问题。

国外计算机科学教材系列人工智能机器人学导论(第2版)(英文版)/(美)ROBIN R. MURPHY 内容简介

本书首先介绍人工智能机器人的定义、历史和体系结构,然后全面系统地阐述人工智能机器人在传感、感知、运动、规划、导航、学习、交互等方面的基础理论和关键技术。全书共分为五部分。部分共5章,定义了什么是智能机器人,介绍了人工智能机器人简史,并讨论了自动化与自治、软件体系结构和遥操作;第二部分共6章,针对机器人的反应(行为)层智能展开讨论,分别对应机器人行为、感知与行为、行为协调、运动学、传感器与感知,以及距离感知等方面的内容;第三部分共5章,详细讨论机器人的慎思层智能,包括慎思层的内涵、导航、路径和动作规划、定位、建图与探索,以及机器学习等内容;第四部分共2章,讨论机器人的交互层智能,包括多机器人系统和人-机器人交互;第五部分共2章,分别介绍自治系统的设计与评估方法,以及与机器人相关的伦理问题。

国外计算机科学教材系列人工智能机器人学导论(第2版)(英文版)/(美)ROBIN R. MURPHY 目录

I Framework for Thinking About AI and Robotics
1 What Are Intelligent Robots?
1.1 Overview
1.2 Definition: What Is an Intelligent Robot?
1.3 What Are the Components of a Robot?
1.4 Three Modalities: What Are the Kinds of Robots?
1.5 Motivation: Why Robots?
1.6 Seven Areas of AI: Why Intelligence?
1.7 Summary
1.8 Exercises
1.9 End Notes
2 A Brief History of AI Robotics
2.1 Overview
2.2 Robots as Tools, Agents, or Joint Cognitive Systems
2.3 World War II and the Nuclear Industry
2.4 Industrial Manipulators
2.5 Mobile Robots
2.6 Drones
2.7 The Move to Joint Cognitive Systems
2.8 Summary
2.9 Exercises
2.10 End Notes
3 Automation and Autonomy
3.1 Overview
3.2 The Four Sliders of Autonomous Capabilities
3.2.1 Plans: Generation versus Execution
3.2.2 Actions: Deterministic versus Non-deterministic
3.2.3 Models: Open- versus Closed-World
3.2.4 Knowledge Representation: Symbols versus Signals
3.3 Bounded Rationality
3.4 Impact of Automation and Autonomy
3.5 Impact on Programming Style
3.6 Impact on Hardware Design
3.7 Impact on Types of Functional Failures
3.7.1 Functional Failures
3.7.2 Impact on Types of Human Error
3.8 Trade-Spaces in Adding Autonomous Capabilities
3.9 Summary
3.10 Exercises
3.11 End Notes
4 Software Organization of Autonomy
4.1 Overview
4.2 The Three Types of Software Architectures
4.2.1 Types of Architectures
4.2.2 Architectures Reinforce Good Software Engineering Principles
4.3 Canonical AI Robotics Operational Architecture
4.3.1 Attributes for Describing Layers
4.3.2 The Reactive Layer
4.3.3 The Deliberative Layer
4.3.4 The Interactive Layer
4.3.5 Canonical Operational Architecture Diagram
4.4 Other Operational Architectures
4.4.1 Levels of Automation
4.4.2 Autonomous Control Levels (ACL)
4.4.3 Levels of Initiative
4.5 Five Subsystems in Systems Architectures
4.6 Three Systems Architecture Paradigms
4.6.1 Trait 1: Interaction Between Primitives
4.6.2 Trait 2: Sensing Route
4.6.3 Hierarchical Systems Architecture Paradigm
4.6.4 Reactive Systems Paradigm
4.6.5 Hybrid Deliberative/Reactive Systems Paradigm
4.7 Execution Approval and Task Execution
4.8 Summary
4.9 Exercises
4.10 End Notes
5 Telesystems
5.1 Overview
5.2 Taskable Agency versus Remote Presence
5.3 The Seven Components of a Telesystem
5.4 Human Supervisory Control
5.4.1 Types of Supervisory Control
5.4.2 Human Supervisory Control for Telesystems
5.4.3 Manual Control
5.4.4 Traded Control
5.4.5 Shared Control
5.4.6 Guarded Motion
5.5 Human Factors
5.5.1 Cognitive Fatigue
5.5.2 Latency
5.5.3 Human: Robot Ratio
5.5.4 Human Out-of-the-Loop Control Problem
5.6 Guidelines for Determining if a Telesystem Is Suitable for an Application
5.6.1 Examples of Telesystems
5.7 Summary
5.8 Exercises
5.9 End Notes
II Reactive Functionality
6 Behaviors
6.1 Overview
6.2 Motivation for Exploring Animal Behaviors
6.3 Agency and Marr’s Computational Theory
6.4 Example of Computational Theory: Rana Computatrix
6.5 Animal Behaviors
6.5.1 Reflexive Behaviors
6.6 Schema Theory
6.6.1 Schemas as Objects
6.6.2 Behaviors and Schema Theory
6.6.3 S-R: Schema Notation
6.7 Summary
6.8 Exercises
6.9 End Notes
7 Perception and Behaviors
7.1 Overview
7.2 Action-Perception Cycle
7.3 Gibson: Ecological Approach
7.3.1 Optic Flow
7.3.2 Nonvisual Affordances
7.4 Two Perceptual Systems
7.5 Innate Releasing Mechanisms
7.5.1 Definition of Innate Releasing Mechanisms
7.5.2 Concurrent Behaviors
7.6 Two Functions of Perception
7.7 Example: Cockroach Hiding
7.7.1 Decomposition
7.7.2 Identifying Releasers
7.7.3 Implicit versus Explicit Sequencing
7.7.4 Perception
7.7.5 Architectural Considerations
7.8 Summary
7.9 Exercises
7.10 End Notes
8 Behavioral Coordination
8.1 Overview
8.2 Coordination Function
8.3 Cooperating Methods: Potential Fields
8.3.1 Visualizing Potential Fields
8.3.2 Magnitude Profiles
8.3.3 Potential Fields and Perception
8.3.4 Programming a Single Potential Field
8.3.5 Combination of Fields and Behaviors
8.3.6 Example Using One Behavior per Sensor
8.3.7 Advantages and Disadvantages
8.4 Competing Methods: Subsumption
8.4.1 Example
8.5 Sequences: Finite State Automata
8.5.1 A Follow the Road FSA
8.5.2 A Pick Up the Trash FSA
8.6 Sequences: Scripts
8.7 AI and Behavior Coordination
8.8 Summary
8.9 Exercises
8.10 End Notes
9 Locomotion
9.1 Overview
9.2 Mechanical Locomotion
9.2.1 Holonomic versus Nonholonomic
9.2.2 Steering
9.3 Biomimetic Locomotion
9.4 Legged Locomotion
9.4.1 Number of Leg Events
9.4.2 Balance
9.4.3 Gaits
9.4.4 Legs with Joints
9.5 Action Selection
9.6 Summary
9.7 Exercises
9.8 End Notes
10 Sensors and Sensing
10.1 Overview
10.2 Sensor and Sensing Model
10.2.1 Sensors: Active or Passive
10.2.2 Sensors: Types of Output and Usage
10.3 Odometry, Inertial Navigation System (INS) and Global Positioning System (GPS)
10.4 Proximity Sensors
10.5 Computer Vision
10.5.1 Computer Vision Definition
10.5.2 Grayscale and Color Representation
10.5.3 Region Segmentation
10.5.4 Color Histogramming
10.6 Choosing Sensors and Sensing
10.6.1 Logical Sensors
10.6.2 Behavioral Sensor Fusion
10.6.3 Designing a Sensor Suite
10.7 Summary
10.8 Exercises
10.9 End Notes
11 Range Sensing
11.1 Overview
11.2 Stereo
11.3 Depth from X
11.4 Sonar or Ultrasonics
11.4.1 Light Stripers
11.4.2 Lidar
11.4.3 RGB-D Cameras
11.4.4 Point Clouds
11.5 Case Study: Hors d’Oeuvres, Anyone?
11.6 Summary
11.7 Exercises
11.8 End Notes
III Deliberative Functionality
12 Deliberation
12.1 Overview
12.2 Strips
12.2.1 More Realistic Strips Example
12.2.2 Strips Summary
12.2.3 Revisiting the Closed-World Assumption and the Frame Problem
12.3 Symbol Grounding Problem
12.4 GlobalWorld Models
12.4.1 Local Perceptual Spaces
12.4.2 Multi-level or HierarchicalWorld Models
12.4.3 Virtual Sensors
12.4.4 Global World Model and Deliberation
12.5 Nested Hierarchical Controller
12.6 RAPS and 3T
12.7 Fault Detection Identification and Recovery
12.8 Programming Considerations
12.9 Summary
12.10 Exercises
12.11 End Notes
13 Navigation
13.1 Overview
13.2 The Four Questions of Navigation
13.3 Spatial Memory
13.4 Types of Path Planning
13.5 Landmarks and Gateways
13.6 Relational Methods
13.6.1 Distinctive Places
13.6.2 Advantages and Disadvantages
13.7 Associative Methods
13.8 Case Study of Topological Navigation with a Hybrid Architecture
13.8.1 Topological Path Planning
13.8.2 Navigation Scripts
13.8.3 Lessons Learned
13.9 Discussion of Opportunities for AI
13.10 Summary
13.11 Exercises
13.12 End Notes
14 Metric Path Planning and Motion Planning
14.1 Overview
14.2 Four Situations Where Topological Navigation Is Not Sufficient
14.3 Configuration Space
14.3.1 Meadow Maps
14.3.2 Generalized Voronoi Graphs
14.3.3 Regular Grids
14.3.4 Quadtrees
14.4 Metric Path Planning
14.4.1 A* and Graph-Based Planners
14.4.2 Wavefront-Based Planners
14.5 Executing a Planned Path
14.5.1 Subgoal Obsession
14.5.2 Replanning
14.6 Motion Planning
14.7 Criteria for Evaluating Path and Motion Planners
14.8 Summary
14.9 Exercises
14.10 End Notes
15 Localization, Mapping, and Exploration
15
展开全部

国外计算机科学教材系列人工智能机器人学导论(第2版)(英文版)/(美)ROBIN R. MURPHY 作者简介

分别于1980年、1989年和1992年在美国佐治亚理工学院获得机械工程学学士学位、计算机科学硕士和博士学位,现任德克萨斯农工大学计算机科学与工程系的Raytheon荣誉教授,机器人辅助搜索与救援研究中心主任,IEEE会士,曾任IEEE机器人和自动化执行委员会执委。研究方向为人工智能,人-机器人交互,以及异构多机器人系统。已发表100多部/篇出版物,是国际上救援机器人和人-机器人交互领域的开创者之一。
Robin R. Murphy分别于1980年、1989年和1992年在美国佐治亚理工学院获得机械工程学学士学位、计算机科学硕士和博士学位,现任得克萨斯农工大学计算机科学与工程系Raytheon荣誉教授,机器人辅助搜索与救援研究中心主任。IEEE会士,曾任IEEE机器人和自动化执行委员会执委。研究方向为人工智能、人-机器人交互,以及异构多机器人系统。已发表100多部/篇出版物,是国际范围内救援机器人和人-机器人交互领域的开创者之一。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
浏览历史
编辑推荐
返回顶部
中图网
在线客服