4.23文创礼盒,买2个减5元 读书月福利
欢迎光临中图网 请 | 注册
> >
Fundamental Principles of Nuclear Engineering 核工程基本原理-英文版

Fundamental Principles of Nuclear Engineering 核工程基本原理-英文版

作者:俞冀阳
出版社:清华大学出版社出版时间:2018-03-01
开本: 16开 页数: 633
本类榜单:工业技术销量榜
中 图 价:¥42.6(4.3折) 定价  ¥99.0 登录后可看到会员价
加入购物车 收藏
运费6元,满69元免运费
?快递不能达地区使用邮政小包,运费14元起
云南、广西、海南、新疆、青海、西藏六省,部分地区快递不可达
温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口
有划线标记、光盘等附件不全详细品相说明>>
本类五星书更多>

Fundamental Principles of Nuclear Engineering 核工程基本原理-英文版 版权信息

  • ISBN:9787302490876
  • 条形码:9787302490876 ; 978-7-302-49087-6
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

Fundamental Principles of Nuclear Engineering 核工程基本原理-英文版 本书特色

本书着力于核工程所涉及领域的基本原理,打通各个领域的壁垒,使核工程所涉及到的各个领域的基本原理融会贯通,使读者能够掌握全面的知识体系。

Fundamental Principles of Nuclear Engineering 核工程基本原理-英文版 内容简介

核工程所涉及到的知识面非常宽,除了数学、物理和化学以外,还涉及到热力学、传热、流体、电气、仪控、材料、化工、机械、核物理、反应堆理论、辐射防护等诸多领域。每一个领域都有一些基本的原理和核工程紧密相关。该书作者着力于基本原理的阐述,使核工程所涉及到的各个领域的基本原理融会贯通,实属难能可贵。该书用全英文编写,对于核电走出去培养外国留学生和中国学生熟悉专业英语词汇均有裨益。

Fundamental Principles of Nuclear Engineering 核工程基本原理-英文版 目录

1Fundamentals of Mathematics and Physics 1.1Calculus 1.1.1Differential and Derivative 1.1.2Integral 1.1.3Laplace Operator 1.2Units 1.2.1Unit Systems 1.2.2Conversion of Units 1.2.3Graphics of Physical Quantity Exercises 2Thermodynamics 2.1Thermodynamic Properties 2.2Energy 2.2.1Heat and Work 2.2.2Energy and Power 2.3System and Process 2.4Phase Change 2.5Property Diagrams 2.5.1PressureTemperature (pT) Diagram 2.5.2PressureSpecific Volume (pv) Diagram 2.5.3PressureEnthalpy (ph) Diagram 2.5.4EnthalpyTemperature (hT) Diagram 2.5.5TemperatureEntropy (Ts) Diagram 2.5.6EnthalpyEntropy (hs)Diagram or Mollier Diagram 2.6The First Law of Thermodynamics 2.6.1Rankine Cycle 2.6.2Utilization of the First Law of Thermodynamics in Nuclear Power Plant 2.7The Second Law of Thermodynamics 2.7.1Entropy 2.7.2Carnots Principle 2.8Power Plant Components 2.8.1Turbine Efficiency 2.8.2Pump efficiency 2.8.3Ideal and Real Cycle 2.9Ideal Gas Law Exercises 3Heat Transfer 3.1Heat Transfer Terminology 3.2Heat Conduction 3.2.1Fouriers Law of Conduction. 3.2.2Rectangular 3.2.3Equivalent Resistance 3.2.4Cylindrical 3.3Convective Heat Transfer 3.3.1Convective Heat Transfer Coefficient 3.3.2Overall Heat Transfer Coefficient 3.4Radiant Heat Transfer 3.4.1Thermal Radiation 3.4.2Black Body Radiation 3.4.3Radiation Configuration Factor 3.5Heat Exchangers 3.6Boiling Heat Transfer 3.6.1Flow Boiling 3.6.2Departure from Nucleate Boiling and Critical Heat Flux 3.7Heat Generation 3.7.1Total Power of Reactor Core 3.7.2Flatten of Power 3.7.3Hot Channel Factor 3.7.4Decay Heat Exercises 4Fluid Flow 4.1Continuity Equation 4.2Laminar and Turbulent Flow 4.2.1Reynolds Number and Hydraulic Diameter 4.2.2Flow Velocity Profiles 4.2.3Average (Bulk) Velocity 4.2.4Viscosity 4.3Bernoullis Equation 4.3.1Venturi Meter 4.3.2Extended Bernoullis Equation 4.4Head Loss 4.4.1Frictional Loss 4.4.2Minor Losses 4.5Natural Circulation 4.5.1Thermal Driving Head 4.5.2Conditions Required for Natural Circulation 4.6TwoPhase Fluid Flow 4.6.1TwoPhase Friction Multiplier 4.6.2Flow Patterns 4.6.3Flow Instability 4.7Some Specific Phenomenon 4.7.1Pipe Whip 4.7.2Water Hammer and Steam Hammer Exercises 5Electrical Science 5.1Basic Electrical Theory 5.1.1The Atom 5.1.2Electrostatic Force 5.1.3Coulombs Law of Electrostatic Charges 5.2Electrical Terminology 5.3Ohms Law 5.4Methods of Producing Voltage (Electricity) 5.4.1Electrochemistry 5.4.2Static Electricity 5.4.3Magnetic Induction 5.4.4Piezoelectric Effect 5.4.5Thermoelectricity 5.4.6Photoelectric Effect 5.4.7Thermionic Emission 5.5Magnetism 5.5.1Magnetic Flux 5.5.2Electromagnetism 5.5.3Magnetomotive Force 5.5.4Magnetic Field Intensity 5.5.5Permeability and Reluctance 5.5.6Magnetic Circuits 5.5.7BH Magnetization Curve 5.5.8Magnetic Induction 5.5.9Faradays Law of Induced Voltage 5.6DC Theory 5.6.1DC Sources 5.6.2Resistance and Resistivity 5.6.3Kirchhoffs Law 5.6.4Inductors 5.6.5Capacitor 5.6.6DC Generators 5.6.7DC Motors 5.7Alternating Current 5.7.1Development of a SineWave Output 5.7.2Basic AC Reactive Components 5.7.3AC Power 5.7.4ThreePhase Circuits 5.7.5AC Generator 5.7.6AC Motor 5.7.7Transformer Exercises 6Instrumentation and Control 6.1Temperature Detect 6.1.1Resistance Temperature Detector 6.1.2Thermocouple 6.1.3Temperature Detection Circuitry 6.2Pressure Detector 6.2.1BellowsType Detectors 6.2.2Bourdon TubeType Detectors 6.2.3ResistanceType Transducers 6.3Level Detector 6.3.1Gauge Glass 6.3.2Ball Float 6.3.3Conductivity Probe 6.3.4Differential Pressure Level Detectors 6.4Flow Measurement 6.4.1Venturi Flow Meter 6.4.2Pitot Tube 6.4.3Rotameter 6.4.4Steam Flow Measurement 6.5Position Measurement 6.5.1Synchro Equipment 6.5.2Limit Switch 6.5.3Reed Switch 6.5.4Potentiometer 6.5.5Linear Variable Differential Transformer 6.6Radioactivity Measurement 6.6.1Radiation Type 6.6.2Gas Ionization Detector 6.6.3Proportional Counter 6.6.4Ionization Chamber 6.6.5GeigerMiller Counter 6.6.6Scintillation Counter 6.6.7Gamma Spectroscopy 6.6.8Miscellaneous Detectors 6.6.9Circuitry and Circuit Elements 6.6.10Detect of Neutron Flux in Reactor 6.6.11Nuclear Power Measurement 6.7Principles of Process Control 6.7.1Control Loop Diagrams 6.7.2Two Position Control Systems 6.7.3Proportional Control 6.7.4Integral Control Systems 6.7.5Proportional Plus Integral Control Systems 6.7.6Proportional Plus Derivative Control Systems 6.7.7ProportionalIntegralDerivative Control Systems 6.7.8Controllers and Valve Actuators Exercises 7Chemistry and Chemical Engineering 7.1Chemical Basis 7.1.1The Atom Structure 7.1.2Chemical Elements and Molecules 7.1.3Avogadros Number 7.1.4The Periodic Table 7.2Chemical Bonding 7.2.1Ionic Bond 7.2.2Covalent Bonds 7.2.3Metallic Bonds 7.2.4Van der Waals Forces 7.2.5Hydrogen Bond 7.3Organic Chemistry 7.4Chemical Equations 7.4.1Le Chateliers Principle 7.4.2Concentrations of Solutions 7.4.3Chemical Equations 7.5Acids, Bases, Salts and pH 7.6Corrosion 7.6.1Corrosion Theory 7.6.2General Corrosion 7.6.3Crud and Galvanic Corrosion 7.6.4Specialized Corrosion 7.7Water Chemistry of Reactor 7.7.1Chemistry Parameters of Reactor 7.7.2Water Treatment 7.7.3Dissolved Gases and Suspended Solids 7.7.4Water Purity 7.7.5Radiation Chemistry of Water 7.8Extraction and Refinement of Uranium 7.8.1Leaching of Uranium 7.8.2Extraction of Uranium 7.8.3Refining of Uranium 7.9Chemical Conversion of Uranium 7.9.1Preparation of Uranium Dioxide 7.9.2Preparation of UF4 7.9.3Preparation of UF6 7.9.4Preparation of Metallic Uranium Exercises 8Material Science 8.1Structure of Metal 8.1.1Types of Crystal 8.1.2Grain Structure and Boundary 8.1.3Polymorphism 8.1.4Alloy 8.1.5Imperfections in Metals 8.2Properties of Metal 8.2.1Stress and Strain 8.2.2Hookes Law 8.2.3Relationship between Stress and Strain 8.2.4Physical Properties of Material 8.3Heat Treatment of Metal 8.4Hydrogen Embrittlement and Irradiation Effect 8.5Thermal Stress 8.6Brittle Fracture 8.6.1Brittle Fracture Mechanism 8.6.2NilDuctility Transition Temperature 8.7Materials in Nuclear Reactor 8.7.1Nuclear Fuel 8.7.2Structure Materials 8.7.3Coolant 8.7.4Moderator Exercises 9Mechanical Science 9.1Diesel Engine 9.1.1Major Components of a Diesel Engine 9.1.2Diesel Engine Support Systems 9.1.3Principle of Diesel Engine 9.2Heat Exchanger 9.3Pump 9.3.1Centrifugal Pump 9.3.2Positive Displacement Pump 9.3.3Coolant Pump for Pressurized Water Reactor Nuclear Power Plant 9.4Valve 9.4.1Valve Type 9.4.2Basic Structure of Valve 9.4.3Typical Valves 9.4.4Pressure Relief Valve and Safety Valve 9.5Miscellaneous Mechanical Components 9.5.1Air Compressor 9.5.2Hydraulic Press 9.5.3Evaporator 9.5.4Steam Generator 9.5.5Cooling Tower 9.5.6Pressurizers 9.5.7Diffusion Separator Exercises 10Nuclear Physics 10.1Atomic Nucleus 10.1.1Atomic Number and Mass Number 10.1.2Isotope 10.1.3Chart of Nuclides 10.2Mass Defect and Binding Energy 10.2.1Mass Loss 10.2.2Binding Energy 10.2.3Energy Level Theory 10.3Radioactive Decay 10.3.1Discovery of Radioactive Decay 10.3.2Category Decay 10.3.3Decay Chain 10.3.4HalfLife 10.3.5Radioactivity 10.3.6Radioactive Equilibrium 10.4Neutron Interactions with Matter 10.4.1Scattering Process 10.4.2Thermal Neutron 10.4.3Radiative Capture Effect 10.4.4Particle Emission 10.4.5Fission 10.5Nuclear Fission 10.5.1The Liquid Drop Model of Nuclear Fission 10.5.2Fissile Material 10.5.3Specific Binding Energy 10.5.4The Energy Released from Nuclear Fission Exercises 11Reactor Theory 11.1Neutron Source 11.1.1Natural Neutron Source 11.1.2Artificial Neutron Source 11.1.3PWR Neutron Source Assembly 11.2Nuclear Cross Section 11.2.1Neutron Reaction Cross Section 11.2.2Mean Free Path 11.2.3Temperature Effects Cross Section 11.3Neutron Flux 11.3.1Ficks Law 11.3.2Neutron Diffusion Equation 11.3.3SelfShielding 11.4Reactor Power 11.4.1Fission Rate 11.4.2Volumetric Heat Release Rate 11.4.3Nuclear Power of Reactor Core 11.5Neutron Moderation 11.5.1Neutron Slowing 11.5.2The Release of Fission Neutron 11.5.3Neutron Generation Time 11.5.4Neutron Energy Spectrum 11.5.5Fermi Age Model 11.5.6Most Probable Neutron Velocities 11.6Neutron Life Cycle and Critical 11.6.1Multiplication Factor 11.6.2Four Factor Formula 11.6.3Effective Multiplication Factor 11.6.4Critical Size 11.6.5Criticality Calculation 11.7Reactivity 11.7.1Reactivity Coefficient 11.7.2Temperature Reactivity Coefficient 11.7.3Pressure Coefficient 11.7.4Void Coefficient 11.7.5Power Coefficient 11.8Neutron Poisons 11.8.1Burnable Poisons 11.8.2Soluble Poisons 11.8.3Control Rods 11.8.4Xenon 11.8.5Samarium 11.9Subcritical Multiplication 11.9.1Subcritical Multiplication Factor 11.9.2Effect of Reactivity Changes on Subcritical Multiplication 11.9.3Use of 1/M Plots 11.10Reactor Kinetics 11.10.1Reactor Kinetics Equations 11.10.2In Hour Equation 11.10.3Reactor Period 11.11Nuclear Power Plant Operation 11.11.1Startup of Reactor 11.11.2Startup of Nuclear Power Plant 11.11.3Nuclear Power Plant Shutdown 11.11.4Status of Nuclear Power Plant 11.12Isotope Separation 11.12.1SWU and Value Function 11.12.2Diffusion Method of Isotope Separation 11.12.3HighSpeed Centrifugation Method 11.12.4Laser Method 11.12.5Separation Nozzle 11.13Nuclear Fuel Cycle 11.13.1Cyclic Manner 11.13.2Key Aspects of Nuclear Fuel Cycle 11.13.3Nuclear Fuel Cycle Cost Exercises 12Radiation Protection 12.1Radiation Quantities and Units 12.1.1Describe the Amount of Radiation Source and Radiation Field 12.1.2Usual Quantities of Dosimetry 12.1.3Commonly Used Quantities in Radiation Protection 12.2Basic Principles and Standards of Radiation Protection 12.2.1The Basic Principles of Radiation Protection 12.2.2Radiation Protection Standards 12.3Radiation Protection Methods 12.3.1Human Radiation Effects 12.3.2Deterministic Effects 12.3.3Random Effects 12.4Radiation Monitoring 12.5Evaluation of Radiation Protection 12.6Radiation Emergency Exercises Symbol Table References
展开全部

Fundamental Principles of Nuclear Engineering 核工程基本原理-英文版 作者简介

俞冀阳,清华大学工程物理系核能科学与工程管理研究所,副教授,博导。1994年毕业于清华大学工程物理系,1999年获清华大学工学博士后在清华大学工程物理系任教。主要从事核反应堆工程与安全方面的人才培养和科学研究工作。已出版的教材与专著有:《反应堆热工水力学》、《热工流体数值计算》、《核电厂事故分析》、《核心理学》、《核动力装置设计与优化原理》、《核工程基本原理》等。英文版专著有国际原子能机构出版的IAEA-TECDOC-1395《Comparison of Heavy Water Reactor Thermalhydraulic Code Predictions with Small Break LOCA Experimental Data》。

商品评论(0条)
暂无评论……
书友推荐
编辑推荐
返回顶部
中图网
在线客服