中图网文创礼盒,买2个减5元
欢迎光临中图网 请 | 注册
> >>
水质控制胶体与界面化学

水质控制胶体与界面化学

作者:常青著
出版社:化学工业出版社出版时间:2017-03-01
开本: 32开 页数: 264
本类榜单:工业技术销量榜
中 图 价:¥235.4(7.9折) 定价  ¥298.0 登录后可看到会员价
加入购物车 收藏
运费6元,满69元免运费
?快递不能达地区使用邮政小包,运费14元起
云南、广西、海南、新疆、青海、西藏六省,部分地区快递不可达
本类五星书更多>

水质控制胶体与界面化学 版权信息

水质控制胶体与界面化学 本书特色

本书介绍水质控制所涉及的胶体与界面化学的基本原理和方法。第1至7章为胶体化学部分,包括胶体化学的简史与基本概念、扩散与布朗运动、沉降、渗透压、光学性质、流变性质、电学性质。第8至10章为界面化学部分,包括液体的表面、溶液的表面、固体的表面等。第11章介绍粗分散体系,包括乳状液、泡沫、凝胶等。 本书的特点是紧密联系水质控制理论与技术,推理严谨细致,简明扼要,并附有必要的案例解析,易学易懂。附录中给出了常用物理常数、水的物理化学常数,以及常见各种液体的表面张力、常用表面活性剂的HLB 值等,方便读者使用。 本书可作为给水排水工程、环境工程、环境科学等专业的研究生教学用书,也可供水处理科技工作者参考。

水质控制胶体与界面化学 内容简介

1. 内容独特,从水质控制的角度筛选和论述胶体与界面化学的知识。国际上同类图书尚缺乏与水质控制密切相关的书籍,本书特别关注了能够应用于水处理理论及水处理实贱的知识,因而本领域的学生和专家会感到兴趣。
2.反映了国际水质控制发展的前沿和研究热点。在论述胶体与界面化学基本原理的同时,对国际上以该原理发展起来的水处理新理论和新技术也做了介绍,反映了国际水质控制发展的前沿和热点,清晰地指出了目前尚存的问题和应当努力的方向,不仅可使读者掌握已有的知识,而且尽可能地引起他们的兴趣和思考,引导他们自己去考虑进一步研究的方向,去解决尚未解决的问题。
3.内容精炼,易读易懂。
4.书中每一章都附有一定量的习题及其解答,有助于读者更深刻地理解和掌握相关理论。从内容到语言尽量做到精益求精。
5. 本书以作者多年从事给水排水、环境工程、环境科学等专业的研究及授课经验为基础,经二十几载的推敲、取舍和锤炼形成,从内容到语言尽量做到了精益求精。

水质控制胶体与界面化学 目录

Preface xi



1. Brief History of Colloid and Interface Chemistry and Basic Concepts

1.1 Origin of the Term “Colloid” 1

1.2 Classifi cation of the Colloidal System 2

1.3 Dispersion Degree and Specifi c Surface Area 4

1.4 Shape of Colloidal Particles 5

1.5 Polydispersity and the Average Size of Colloidal Particles 6

1.6 Colloidal Pollutants in Natural Waters 11



2. Diffusion and Brownian Motion

2.1 Diffusion 13

2.1.1 Fick’s First Law 13

2.1.2 Fick’s Second Law 14

2.2 Brownian Motion 15

2.3 Application of Diffusion 18

2.3.1 Calculation of Radius and Molecular Weight of Spherical Particle 18

2.3.2 Calculation of Axial Ratio of Nonspherical Particle 19

2.3.3 Estimation of Amount of Solvation 20

2.4 Role of Diffusion Theory in Water Treatment and Natural Water 22



3. Sedimentation

3.1 Sedimentation in the Gravity Field 23

3.1.1 Measurement of the Distribution of Particle Sizes by Sedimentation Analysis 24

3.1.2 Sedimentation Equilibrium and Altitude Distribution Law 26

3.2 Sedimentation in Centrifugal Force Field 28

3.2.1 Velocity Method 28

3.2.2 Equilibrium Method 31

3.3 Applications of Sedimentation in Water Treatment 33



4. Osmotic Pressure

4.1 Osmotic Pressure of Ideal Solutions 37

4.2 Osmotic Pressure of Macromolecule Solutions 39

4.3 Donnan Equilibrium and Osmotic Pressure 41

4.4 Measurement of Osmotic Pressure 43

4.4.1 Osmometer 43

4.4.2 Semipermeable Membrane 43

4.4.3 Method of Measurement 45

4.5 Application of Reverse Osmosis in Water Treatment 46



5. Optical Properties

5.1 Light Scattering of Colloid Systems 49

5.2 Rayleigh Equation of Light Scattering 51

5.3 Polarized Components and Space Distribution of Scattered Light 52

5.4 Light Scattering of Large Particles 54

5.5 Light Scattering of Macromolecule Solutions 55

5.5.1 Fluctuation in Density and Concentration 55

5.5.2 Measurement of the Molecular Weight of Polymers 57

5.6 Turbidity of Water 57



6. Rheology Properties

6.1 Basic Concept and Basic Theory 61

6.1.1 Shearing Strain and Shear Rate 61

6.1.2 Newton Equation 62

6.2 Measurement of Viscosity 63

6.2.1 Capillary Flow Method 63

6.2.2 Concentric Rotational Cylinder Method 66

6.3 Viscosity of Dilute Colloidal Solutions 67

6.3.1 Basic Concept 67

6.3.2 Effect of Spherical Particles on the Viscosity of Colloidal Dispersion 68

6.3.3 Effect of Particle Morphology on the Viscosity of Colloidal Solutions 69

6.3.4 Effect of Particle Solvation on the Viscosity of Colloidal Solutions 69

6.3.5 Measuring the Molecular Weight of Polymers and Flocculants in Water Treatment 70

6.4 Rheology Properties of Concentrated Dispersion Systems 73

6.5 Rheology Properties of Sludge Produced in Water Treatment 76



7. Electrical Properties

7.1 Origin of the Surface Charge of Colloids in Natural Waters 80

7.1.1 Isomorphous Replacement Within the Lattice 80

7.1.2 Ionization and Adsorption of Hydrous Oxide Minerals 81

7.1.3 Specifi c Adsorption 82

7.1.4 Ionization and Adsorption of Humic Substances 82

7.1.5 Amphoteric Behavior of Protein 83

7.2 Electrokinetic Phenomena 84

7.2.1 Electrophoresis 84

7.2.2 Electroosmosis 85

7.2.3 Streaming Potential 86

7.2.4 Sedimentation Potential 86

7.3 Model of Electric Double Layer 87

7.3.1 Helmholtz Model of Parallel-Plate Capacitor 87

7.3.2 Gouy–Chapman Model of Diffuse Double Layer 88

7.3.3 Stern Model 94

7.4 Electrokinetic Theory and Experiment 96

7.4.1 Theory and Experiment of Electroosmosis 97

7.4.2 Theory and Experiment of Electrophoresis 101

7.4.3 Theory and Experiment of Streaming Potential 108

7.4.4 Theory and Experiment of Sedimentation Potential 109

7.5 Coagulation Thermodynamics: DLVO Theory of Colloid Stability 110

7.5.1 van der Waals Attractive Energy Between Particles 111

7.5.2 Double Layer Repulsive Energy Between Particles 113

7.5.3 Total Energy of Interaction Between Particles 115

7.5.4 Critical Coagulation Concentration 118

7.6 Kinetics of Coagulation 122

7.6.1 Rate of Perikinetic Coagulation 122

7.6.2 Rate of Orthokinetic Coagulation 126

7.7 Effect of Macromolecules on Colloid Stability 131

7.7.1 Stabilization Effect of Macromolecules 131

7.7.2 Application of Stabilization Effect of Macromolecules in Cooling Water 133

7.7.3 Flocculation Effect of Macromolecules 133

7.8 Coagulation in Natural Waters and Water Treatment 134



8. Surface of Liquid

8.1 Surface Tension and Surface Free Energy 137

8.1.1 Basic Concepts 137

8.1.2 Origination of Surface Tension and Surface Free Energy 138

8.1.3 Surface Tensions of Common Liquids 139

8.1.4 Variation of Surface Tension With Temperature and Pressure 139

8.2 Relation Between Liquid Pressure and Surface Curvature 141

8.3 Relation Between Vapor Pressure of Liquid and Surface Curvature 144

8.4 Contact Angle 146

8.5 Measurement of Surface Tension 146

8.5.1 Capillary Rise Method 146

8.5.2 Ring Method 148

8.6 Cohesion Work and Adhesion Work 149

8.7 Spreading of One Liquid on Another Liquid 150

8.8 Fowkes Theory of Interfacial Tension 152

8.9 Insoluble Monomolecular Film 155

8.9.1 Surface Pressure 155

8.9.2 Various States of Monomolecular Film 156

8.9.3 Application of Surface Film 158



9. Surface of Solution

9.1 Surface Activity 161

9.2 Surface Excess and Gibbs Adsorption Equation 162

9.2.1 Surface Excess 162

9.2.2 Gibbs Adsorption Equation 165

9.2.3 Adsorption at Surface of Solution 167

9.3 Surfactant 169

9.3.1 Characteristics, Chemical Structure, and Classifi cation of Surfactant 169

9.3.2 Formation of Micelles 170

9.3.3 Effect of Micelles on the Property of Solution 172

9.3.4 Dependence of Surfactant Solubility on Temperature 172

9.3.5 Dependence of Surfactant Properties on Its Structure 173



10. Surface of Solids

10.1 Basic Principles 176

10.1.1 Physical Adsorption and Chemical Adsorption 176

10.1.2 Thermodynamics of Adsorption 177

10.2 Adsorption of Gas at a Solid Surface 180

10.2.1 Adsorption Isotherm 180

10.2.2 Langmuir Adsorption Isotherm Equation 181

10.2.3 Freundlich Adsorption Equation 187

10.2.4 Temkin Adsorption Equation 187

10.2.5 BET Equation for Multimolecular Layer Adsorption 188

10.2.6 Polanyi Adsorption Potential Theory and D–R Equation 194

10.2.7 Capillary Condensation and Adsorption Hysteresis 199

10.3 Adsorption from Solution 201

10.3.1 Amount of Adsorption 201

10.3.2 Adsorption Kinetics 204

10.3.3 Pseudofi rst Order Model 205

10.3.4 Pseudosecond Order Model 205

10.3.5 Intraparticle Diffusion Model 206

10.3.6 Elovich Model 207

10.4 Wetting of Solid Surface 207

10.4.1 Measurement of Contact Angle 209

10.4.2 Effect of Surface Roughness on Contact Angle 212

10.4.3 Spreading of Liquid on Solid Surface 213

10.4.4 Wetting and Water Treatment 215

10.5 Measurement of Properties of Adsorbents 216

10.5.1 Measurement of Specifi c Surface Area 216

10.5.2 Measurement of Pore Volume 217

10.5.3 Measurement of Mean Pore Radius 218

10.5.4 Measurement of Pore Radius Distribution 219

10.6 Analysis of the Surface of Adsorbents 221

10.6.1 Analysis of the Surface Morphology of Adsorbents 221

10.6.2 Analysis of the Surface Composition of Adsorbents 222

10.7 Adsorption in Natural Water and Water Treatment 223



11. Emulsion, Foam, and Gel

11.1 Emulsion 227

11.1.1 Formation of Emulsion and Its Type 227

11.1.2 Stabilization and Breaking of Emulsion 229

11.1.3 Applications of Emulsion in Wastewater Treatment 233

11.2 Foam 234

11.2.1 Structure and Formation Condition of Foam 234

11.2.2 Stability of Foam 235

11.2.3 Destruction of Foam 237

11.2.4 Application of Foam in Wastewater Treatment 239

11.3 Gel 240

11.3.1 Basic Concepts 240

11.3.2 Structure of Gel 241

11.3.3 Expansion of Gel 242

11.3.4 Diffusion in Gel 243

11.3.5 Gels in Water Treatment 244



Appendix A

Table A.1 Basic SI Units 247

Table A.2 Derived SI Units 247

Table A.3 Relation of SI Units to Other Common Units 248

Table A.4 Unit Prefi xes 248

Appendix B

Table B.1 Physical Constants 249

Table B.2 Surface Tension of Common Liquids 249

Table B.3 Physicochemical Constants of Water 250

Table B.4 HLB Value of Some Surfactants 252

Appendix C

Table C.1 Common Equations 253

Further Reading 255

Index 257
展开全部

水质控制胶体与界面化学 作者简介

常青(1947—),男,毕业于中国科学院生态环境研究中心,硕士学位。任兰州交通大学环境与市政工程学院教授,博导。获“全国模范教师”、“甘肃省高等学校教学名师”、“铁道部有突出贡献的中青年专家” 等称号。讲授环境化学、物理化学、胶体与界面化学等。研究方向为污染控制化学,主持科研项目10余项,其中国家自然科学基金项目4项,教育部博士点基金项目1项,甘肃省科技计划项目1项,指导博士研究生14名及硕士研究生50名,获教学奖励9项及科技奖励10项,发表学术论文120余篇,主编出版学术著作3部,参编出版学术著作2部。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服