读书月福利
欢迎光临中图网 请 | 注册
> >
流体动力学中的计算方法-第3版-(影印版)

流体动力学中的计算方法-第3版-(影印版)

作者:弗兹格
出版社:世界图书出版公司出版时间:2012-09-01
开本: 24开 页数: 423
读者评分:4分1条评论
本类榜单:自然科学销量榜
中 图 价:¥45.5(7.0折) 定价  ¥65.0 登录后可看到会员价
暂时缺货 收藏
运费6元,满69元免运费
?快递不能达地区使用邮政小包,运费14元起
云南、广西、海南、新疆、青海、西藏六省,部分地区快递不可达
本类五星书更多>

流体动力学中的计算方法-第3版-(影印版) 版权信息

  • ISBN:9787510048012
  • 条形码:9787510048012 ; 978-7-5100-4801-2
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

流体动力学中的计算方法-第3版-(影印版) 本书特色

  弗兹格编著的《流体动力学中的计算方法(第3版)》内容介绍:computational fluid dynamics, commonly known by the acronym‘cfd’,is undergoing significant expansion in terms of both the number of courses offered at universities and the number of researchers active in the field. there are a number of software packages available that solve fluid flow problems; the market is not quite as large as the one for structural mechanics codes, in which finite element methods are well established. the lag can be explained by the [act that cfd problems are, in general, more difficult to solve. however, cfd codes are slowly being accepted as design tools by industrial users. at present,users of cfd need to be fairly knowledgeable, which requires education of both students and working engineers. the present book is an attempt to fill this need.    

流体动力学中的计算方法-第3版-(影印版) 内容简介

本书全面讲述了用计算机解决流体力学问题的技巧。书中详述了能用到的所有技巧,包括计算流体力学中的高级技巧,比如湍流的大漩涡模拟、多格方法、平行计算、移动格、结构、块结构和非结构边界适用格,自由曲面流。并且增加了两部分,分别讲述网格质量和离散方法。也讲述了多种不同方法的一般根和基本原理。书中包括了对编码开发人员和应用人员的大量建设性意见,同样也适用于初学者和专家。并且详细处理了数值精确性,估计和数值误差的减小等问题。目次:流体流动的基本概念;数值方法引入;有限差分方法;有限体积方法;线性方程系统解;非平稳性问题方法;Navier-Stokes方程解;复几何;紊流;可压缩流;效率和精度改进;特别问题。

流体动力学中的计算方法-第3版-(影印版) 目录

Preface1.Basic Concepts of Fluid Flow 1.1 Introduction 1.2 Conservation Principles 1.3 Mass Conservation 1.4 Momentum Conservation 1.5 Conservation of Scalar Quantities 1.6 Dimensionless Form of Equations 1.7 Simplified Mathematical Models 1.7.1 Incompressible Flow 1.7.2 Inviscid (Euler) Flow 1.7.3 Potential Flow 1.7.4 Creeping (Stokes) Flow 1.7.5 Boussinesq Approximation 1.7.6 Boundary Layer Approximation 1.7.7 Modeling of Complex Flow Phenomena 1.8 Mathematical Classification of Flows 1.8.1 Hyperbolic Plows 1.8.2 Parabolic Flows 1.8.3 Elliptic Flows 1.8.4 Mixed Flow Types 1.9 Plan of This Book2.Introduction to Numerical Methods 2.1 Approaches to Fluid Dynamical Problems 2.2 What is CFD? 2.3 Possibilities and Limitations of Numerical Methods 2.4 Components of a Numerical Solution Method 2.4.1 Mathematical Model 2.4.2 Discretization Method 2.4.3 Coordinate and Basis Vector Systems 2.4.4 Numerical Grid 2.4.5 Finite Approximations 2.4.6 Solution Method 2.4.7 Convergence Criteria 2.5 Properties of Numerical Solution Methods 2.5.1 Consistency 2.5.2 Stability 2.5.3 Convergence 2.5.4 Conservation 2.5.5 Boundedness 2.5.6 Realizability 2.5.7 Accuracy 2.6 Discretization Approaches 2.6.1 Finite Difference Method 2.6.2 Finite Volume Method 2.6.3 Finite Element Method3.Finite Difference Methods 3.1 Introduction 3.2 Basic Concept 3.3 Approximation of the First Derivative 3.3.1 Taylor Series Expansion 3.3.2 Polynomial Fitting 3.3.3 Compact Schemes 3.3.4 Non-Uniform Grids 3.4 Approximation of the Second Derivative 3.5 Approximation of Mixed Derivatives 3.6 Approximation of Other Terms 3.7 Implementation of Boundary Conditions 3.8 The Algebraic Equation System 3.9 Discretization Errors 3.10 An Introduction to Spectral Methods 3.10.1 Basic Concept 3.10.2 Another View of Discretization Error 3.11 Example4.Finite Volume Methods 4.1 Introduction 4.2 Approximation of Surface Integrals 4.3 Approximation of Volume Integrals 4.4 Interpolation and Differentiation Practices 4.4.1 Upwind Interpolation (UDS) 4.4.2 Linear Interpolation (CDS) 4.4.3 Quadratic Upwind Interpolation (QUICK).. 4.4.4 Higher-Order Schemes 4.4.5 Other Schemes 4.5 Implementation of Boundary Conditions 4.6 The Algebraic Equation System 4.7 Examples Solution of Linear Equation Systems5.1 Introduction 5.2 Direct Methods 5.2.1 Gauss Elimination 5.2.2 LU Decomposition 5.2.3 Tridiagonal Systems 5.2.4 Cyclic Reduction 5.3 Iterative Methods 5.3.1 Basic Concept 5.3.2 Convergence 5.3.3 Some Basic Methods 5.3.4 Incomplete LU Decomposition: Stone's Method 5.3.5 ADI and Other Splitting Methods 5.3.6 Conjugate Gradient Methods 5.3.7 Biconjugate Gradients and CGSTAB 5.3.8 Multigrid Methods 5.3.9 Other Iterative Solvers 5.4 Coupled Equations and Their Solution 5.4.1 Simultaneous Solution 5.4.2 Sequential Solution 5.4.3 Under-Relaxation 5.5 Non-Linear Equations and their Solution 5.5.1 Newton-like Techniques 5.5.2 Other Techniques 5.6 Deferred-Correction Approaches 5.7 Convergence Criteria and Iteration Errors 5.8 Examples Methods for Unsteady Problems6.1 Introduction 6.2 Methods for Initial Value Problems in ODEs 6.2.1 Two-Level Methods 6.2.2 Predictor-Corrector and Multipoint Methods 6.2.3 Runge-Kutta Methods 6.2.4 Other Methods 6.3 Application to the Generic Transport Equation 6.3.1 Explicit Methods 6.3.2 Implicit Methods 6.3.3 Other Methods 5.4 Examples7.Solution of the Navier-Stokes Equations 7.1 Special Features of the Navier-Stokes Equations 7.1.1 Discretization of Convective and Viscous Terms 7.1.2 Discretization of Pressure Terms and Body Forces 7.1.3 Conservation Properties 7.2 Choice of Variable Arrangement on the Grid 7.2.1 Colocated Arrangement 7.2.2 Staggered Arrangements 7.3 Calculation of the Pressure 7.3.1 The Pressure Equation and its Solution 7.3.2 A Simple Explicit Time Advance Scheme 7.3.3 A Simple Implicit Time Advance Method 7.3.4 Implicit Pressure-Correction Methods 7.4 Other Methods 7.4.1 Fractional Step Methods 7.4.2 Streamfunction-Vorticity Methods 7.4.3 Artificial Compressibility Methods 7.5 Solution Methods for the Navier-Stokes Equations 7.5.1 Implicit Scheme Using Pressure-Correction and a Stag- gered Grid 7.5.2 Treatment of Pressure for Colocated Variables 7.5.3 SIMPLE Algorithm for a Colocated Variable Arrange- ment 7.6 Note on Pressure and Incompressibility 7.7 Boundary Conditions for the Navier-Stokes Equations 7.8 Examples8.Complex Geometries 8.1 The Choice of Grid 8.1.1 Stepwise Approximation Using Regular Grids 8.1.2 Overlapping Grids 8.1.3 Boundary-Fitted Non-Orthogonal Grids 8.2 Grid Generation 8.3 The Choice of Velocity Components 8.3.1 Grid-Oriented Velocity Components 8.3.2 Cartesian Velocity Components 8.4 The Choice of Variable Arrangement 8.4.1 Staggered Arrangements 8.4.2 Colocated Arrangement 8.5 Finite Difference Methods 8.5.1 Methods Based on Coordinate Transformation 8.5.2 Method Based on Shape Functions 8.6 Finite Volume Methods 8.6.1 Approximation of Convective Fluxes 8.6.2 Approximation of Diffusive Fluxes 8.6.3 Approximation of Source Terms 8.6.4 Three-Dimensional Grids 8.6.5 Block-Structured Grids 8.6.6 Unstructured Grids 8.7 Control-Volume-Based Finite Element Methods 8.8 Pressure-Correction Equation 8.9 Axi-Symmetric Problems 8.10 Implementation of Boundary Conditions 8.10.1 Inlet 8.10.2 Outlet 8.10.3 Impermeable Walls 8.10.4 Symmetry Planes 8.10.5 Specified Pressure 8.11 Examples9.Turbulent Flows 9.1 Introduction 9.2 Direct Numerical Simulation (DNS) 9.2.1 Example: Spatial Decay of Grid Turbulence 9.3 Large Eddy Simulation (LES) 9.3.1 Smagorinsky and Related Models 9.3.2 Dynamic Models 9.3.3 Deconvolution Models 9.3.4 Example: Flow Over a Wall-Mounted Cube 9.3.5 Example: Stratified Homogeneous Shear Flow 9.4 RANS Models 9.4.1 Reynolds-Averaged Navier-Stokes (RANS) Equations 9.4.2 Simple Turbulence Models and their Application 9.4.3 The v2f Model 9.4.4 Example: Flow Around an Engine Valve 9.5 Reynolds Stress Models 9.6 Very Large Eddy Simulation10. Compressible Flow 10.1 Introduction 10.2 Pressure-Correction Methods for Arbitrary Mach Number 10.2.1 Pressure-Velocity-Density Coupling 10.2.2 Boundary Conditions 10.2.3 Examples 10.3 Methods Designed for Compressible Flow 10.3.1 An Overview of Some Specific Methods11. Efficiency and Accuracy Improvement 11.1 Error Analysis and Estimation 11.1.1 Description of Errors 11.1.2 Estimation of Errors 11.1.3 Recommended Practice for CFD Uncertainty Analysis 11.2 Grid quality and optimization 11.3 Multigrid Methods for Flow Calculation 11.4 Adaptive Grid Methods and Local Grid Refinement 11.5 Parallel Computing in CFD 11.5.1 Iterative Schemes for Linear Equations 11.5.2 Domain Decomposition in Space 11.5.3 Domain Decomposition in Time 11.5.4 Efficiency of Parallel Computing12. Special Topics 12.1 Introduction 12.2 Heat and Mass Transfer 12.3 Flows With Variable Fluid Properties 12.4 Moving Grids 12.5 Free-Surface Flows 12.5.1 Interface-Tracking Methods 12.5.2 Hybrid Methods 12.6 Meteorological and Oceanographic Applications 12.7 Multiphase flows 12.8 CombustionA. Appendices A.1 List of Computer Codes and How to Access Them A.2 List of Frequently Used AbbreviationsReferencesIndex
展开全部
商品评论(1条)
书友推荐
编辑推荐
返回顶部
中图网
在线客服